Based on an improved understanding of bacteriophages -- viruses that infect bacteria--scientists reporting in the Sept. 23 issue of the journal Nature believe they have discovered a potential new way to control drug-resistant bacteria, an increasingly worrisome public health problem.
The new research, funded by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, found that bacteriophages contain genes that allow them to quickly change their proteins to bind to different cell receptors. The researchers, who encountered this genetic property while working on an unrelated project, believe that this discovery could lead to the use of genetically engineered phages to treat bacterial infections that have become resistant to antibiotics.
"This serendipitous finding underscores the importance of basic research," says Anthony S. Fauci, MD, director of NIAID. "With our increased understanding of how bacteriophages work, we can potentially tailor these viruses to infect and destroy bacteria that have mutated and become drug-resistant."
"This powerful and innovative research opens up numerous possibilities for developing drugs and vaccines that can control resistant bacteria, which are a growing public health concern," says David L. Klein, PhD, who oversees bacterial respiratory disease research at NIAID. "The introduction of bacteriophages may also lead to a unique approach against biodefense-related pathogens."
The discovery was made by researchers at the University of California Los Angeles led by Jeffrey F. Miller, PhD, professor and chair of microbiology, immunology and molecular genetics. Miller's team found that the genome of the phage that infects Bordetella bronchiseptica, a relative of the bacterium that causes whooping cough, contains a series of genes that change the part of the virus that binds to the bacterial cell. These genes allow the phage to rapidly evolve new variants that can recognize and attack bacteria that may have become resistant to the previous phage.
"Phage therapy has been practiced for nearly a hundred years in parts of the world, and even in the United States in the first half of the 20th century," says Miller. "But now we think we can engineer bacteriophages to function as 'dynamic' anti-microbial agents. This could provide us with a renewable resource of smart antibiotics for treating bacterial diseases."
Miller says that he and his team are continuing to study this genetic mechanism to learn more about its biochemical properties and to determine whether higher forms of life have similar classes of genes. He believes that, in time, they will be able to use the knowledge gleaned from this discovery to generate proteins in the laboratory that will bind to almost any molecule of interest.
Source: National Institute of Allergy and Infectious Diseases (NIAID)
Happy Hand Hygiene Day! Rethinking Glove Use for Safer, Cleaner, and More Ethical Health Care
May 5th 2025Despite their protective role, gloves are often misused in health care settings—undermining hand hygiene, risking patient safety, and worsening environmental impact. Alexandra Peters, PhD, points out that this misuse deserves urgent attention, especially today, World Hand Hygiene Day.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.