Researchers at the Johns Hopkins Malaria Research Institute demonstrated for the first time that the Anopheles mosquitos innate immune system could be genetically engineered to block the transmission of the malaria-causing parasite to humans. In addition, they showed that the genetic modification had little impact on the mosquitos fitness under laboratory conditions.
At left is a normal mosquito from the wild. The three mosquitoes to the right, with glowing eyes, are from three strains genetically engineered to better kill the malaria parasites in their guts. The mosquito at the far right, with yellow eyes, is a hybrid of the two other modified strains and was the most effective of the three at killing the parasite.
Researchers at the Johns Hopkins Malaria Research Institute demonstrated for the first time that the Anopheles mosquitos innate immune system could be genetically engineered to block the transmission of the malaria-causing parasite to humans. In addition, they showed that the genetic modification had little impact on the mosquitos fitness under laboratory conditions. The researchers findings were published Dec. 22, 2011Â in the online journal PLoS Pathogens.
The immune system of the Anopheles mosquito is capable of killing a large proportionbut not allof the disease-causing parasites that are ingested when the mosquito feeds on an infected human, said George Dimopoulos, PhD, senior author of the study and associate professor in the W. Harry Feinstone Department of Molecular Microbiology and Immunology at the Johns Hopkins Bloomberg School of Public Health. Weve genetically engineered this immune system to create mosquitoes that are better at blocking the transmission of the human malaria parasite Plasmodium falciparum.
For the study, Dimopoulos and his team genetically engineered Anopheles mosquitoes to produce higher than normal levels of an immune system protein Rel2 when they feed on blood. Rel2 acts against the malaria parasite in the mosquito by launching an immune attack involving a variety of anti-parasitic molecules. Through this approach, instead of introducing a new gene into the mosquito DNA, the researchers used one of the insects own genes to strengthen its parasite-fighting capabilities. According to the researchers, this type of genetically modified mosquito could be further developed and used to convert malaria-transmitting to Plasmodium-resistant mosquito populations. One possible obstacle for this approach is the fitness of the genetically modified malaria resistant mosquitoes, since they would have to compete with the natural malaria-transmitting mosquitoes. The researchers showed with their study that the Rel2 genetically modified mosquito strain lived as long, and laid as many eggs, as the non-modified wild type mosquitoes, thereby suggesting that their fitness had not become significantly impaired.
Malaria is one of worlds most serious public health problems. Mosquitoes and the malaria parasite are becoming more resistant to insecticides and drugs, and new control methods are urgently needed. Weve taken a giant step towards the development of new mosquito strains that could be released to limit malaria transmission, but further studies are needed to render this approach safe and fail-proof, said Dimopoulos.
Worldwide, malaria afflicts more than 225 million people. Each year, the disease kills approximately 800,000, many of whom are children living in Africa.
Authors of Engineered Anopheles immunity to Plasmodium infection are Yuemei Dong, Suchismita Das, Chris Cirimotich, Jayme A. Souza-Neto, Kyle J. McLean and George Dimopoulos.
The Johns Hopkins Malaria Research Institute is a state-of-the-art research facility at the Johns Hopkins Bloomberg School of Public Health. It focuses on a broad program of basic science research to treat and control malaria, develop a vaccine and find new drug targets to prevent and cure this deadly disease.
Funding was provided by the National Institutes of Health and the Johns Hopkins Malaria Research Institute.
Â
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.