For most people, a simple case of thrush or athlete’s foot can be quickly and easily treated using over-the-counter anti-fungal creams and pills. However, even with medication, fungal pathogens can overwhelm a weakened immune system and cause systemic infections – as in people with HIV/AIDS, or organ transplant recipients, for example – posing a severe health risk.
In fact, fungal pathogens have been classified as “hidden killers” and an estimated 1.5 million people around the world die from such systemic infections every year. There is yet no effective medicine available for systemic fungal infections.
When fungal cells enter the body, they stand out from our own cells because they are ‘flagged’ with unique patterns of molecular markers. These ‘pathogen-associated molecular patterns’, or PAMPs for short, are recognized by receptor proteins on cells of the immune system. These receptors then activate signaling molecules triggering a cascade of different immune functions, such as inflammation, aimed at recruiting immune cells to the infected area. Those recruited immune cells will then, for example via the production of highly toxic reactive oxygen species, eliminate fungal pathogens.
Candida albicans is recognized by certain PAMP receptors, called Dectins, and triggers activation of the signaling molecule SYK. The first authors of the study, Gerald Wirnsberger (IMBA) and Florian Zwolanek (MFPL), now discovered that the protein CBL-B acts as a ‘brake’ in this pathway: when CBL-B is present, Dectin and SYK activity are dampened and immune responses are eventually ‘switched off’, but when CBL-B is absent, Dectin/SYK get over-activated and a protective anti-fungal immune responses occur.
Using this knowledge, the two research groups around Josef Penninger (IMBA) and Karl Kuchler (MFPL) – designed an inhibitory peptide to block CBL-B activity and thereby unleash defense mechanisms against invading fungal pathogens. After successfully testing this peptide with lab-grown cells, the peptide was used to treat Candida albicans infected mice. While untreated mice succumbed to the lethal infection, peptide treatment provided complete protection from fungal disease.
As Wirnsberger explains: “This work constitutes a novel paradigm in antifungal therapy – a pharmacological modulation of the host immune response mediated by CBLB. A fundamental understanding of how molecular mechanisms either boost or damp our immune response against Candida albicans will pave the way for a drugs against deadly fungal infections."
Source: Institute of Molecular Biotechnology
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.