Small peptides attack bacteria in many different ways and may well become a new generation of antibiotics. Biologists at the Ruhr-Universität Bochum (RUB) have been researching how such peptides kill bacterial cells.
“It is quite possible that, in 10 years' time, all of the currently marketed antibiotics will lose their power because bacteria will have become resistant against all active agents,” says junior professor Dr. Julia Bandow. Together with colleagues from Germany, Austria and Canada, she reports on the peptide’s mode of action in the journal Proceedings of the National Academy of Sciences USA (PNAS).
Bandow, who heads the RUB’s Junior Research Group Microbial Antibiotic Research, and her team have been studying the MP196 peptide as a representative of a group of very small positively charged peptides that consist of some four to 10 amino acids. Earlier studies had shown that MP196 is efficient against various bacteria, including particularly problematic multi-resistant pathogens that frequently cause sepsis. How MP196 kills bacteria remained unclear. However, in order for a new substance to be approved as a drug, its mechanism of action has to be fully understood.
The biologists have closed this gap. They showed that the MP196 peptide integrates into the bacterial cell membrane. In doing so, it delocalises proteins localised at the bacterial cell membrane that participate in vital processes. Two processes in particular are severely affected: MP196 disrupts the biosynthesis of the cell wall, i.e., of the outer envelope that encloses the cell membrane and provides physical stability. It also inhibits cell respiration and, consequently, the production of the energy-storing molecule ATP. This results in cellular energy deficiency, thus preventing the synthesis of macromolecules vital for bacterial growth.
“By delocalizing crucial membrane proteins, MP196 disrupts a number of cellular processes that take place at the membrane,” says Bandow. “As a result, the development of resistance against the peptide seems particularly difficult.”
The researchers are confident that MP196 can serve as a scaffold to develop drugs that attack certain classes of bacteria without damaging human cells. The interaction of MP196 with the cell membrane was dependent on the fatty acids present in the membrane. The membrane composition varies not only between human and bacterial cells, but also between different classes of bacteria.
This study was part of the project “Innovative Antibiotics from NRW” (InA) that was co-financed by the State of North Rhine-Westphalia and the European Union’s European Regional Development Fund “Investing in your Future” within the framework of the “BIO.NRW.red” cluster. Together with partners from academia and industry, the RUB microbiologists and chemists also study the antibiotic potential of organometallic compounds.
Reference: Wenzel M, et al. (2014): Small cationic antimicrobial peptides delocalize peripheral membrane proteins, Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.1319900111.
Source: Ruhr-Universität Bochum (RUB)
Beyond the Surface: Rethinking Environmental Hygiene Validation at Exchange25
June 30th 2025Environmental hygiene is about more than just shiny surfaces. At Exchange25, infection prevention experts urged the field to look deeper, rethink blame, and validate cleaning efforts across the entire care environment, not just EVS tasks.
A Controversial Reboot: New Vaccine Panel Faces Scrutiny, Support, and Sharp Divides
June 26th 2025As the newly appointed Advisory Committee on Immunization Practices (ACIP) met for the first time under sweeping changes by HHS Secretary Robert F. Kennedy Jr, the national spotlight turned to the panel’s legitimacy, vaccine guidance, and whether science or ideology would steer public health policy in a polarized era.
Getting Down and Dirty With PPE: Presentations at HSPA by Jill Holdsworth and Katie Belski
June 26th 2025In the heart of the hospital, decontamination technicians tackle one of health care’s dirtiest—and most vital—jobs. At HSPA 2025, 6 packed workshops led by experts Jill Holdsworth and Katie Belski spotlighted the crucial, often-overlooked art of PPE removal. The message was clear: proper doffing saves lives, starting with your own.