Two small RNAs (sRNAs) working in concert enable the deadly enterohemorrhagic Escherichia coli (EHEC) 0157:H7 to attach to and initiate infection in epithelial cells that line the digestive tract, according to a study published in mBio®, the online open-access journal of the American Society for Microbiology.
Gram-negative bacteria such as EHEC enter their prey and deploy syringe-like weapons called type III secretion systems (T3SS) that inject proteins into the epithelial cells to promote reorganization of the the cytoskeleton into pedestals that act as docking stations for the bacteria to adhere to the cells.
Both pedestal and T3SS formation demand rapid activation and precise coordination of a large number of bacterial genes co-opted from a pathogenicity island called the locus of enterocytes effacement (LEE) which Charley Gruber, Vanessa Sperandio and their colleagues at the University of Texas Southwestern Medical School in Dallas recently discovered is orchestrated by two sRNAs known as GlmY and GlmZ.
"Our data reveal two previously unknown mechanisms of actions for these sRNAs," Sperandio says. "Working together GlmY and GlmZ cleave the transcript between espJ and espFu genes enabling translation of EspFu, a protein important for efficient mammalian-cell invasion, and also destabilize the LEE 4 and 5 transcripts thus fine tuning LEE gene expression."
"Destabilization of LEE is especially important for two reasons: first, it permits the differential expression of various genes encoded within the same cluster and second, it ensures that the bacteria are forming optimal pedestal levels on epithelial cells during infection," according to Sperandio. Thus, these researchers propose that these sRNAs are responsible for the dynamic rewiring of the bacterial complex machineries that enable infection.
"This is a very important contribution to the field particularly because it shows that things are more complicated than they initially appeared," comments Petr G. Leiman at Ãcole Polytechnique Fédérale de Lausanne in Switzerland. "Studies involving sRNA are tricky and require many controls which this paper appears to present in full, thus making the Sperandio team's work very significant."
"The horizontal acquisitions of pathogenicity islands [such as LEE] with their added virulence genes enable bacteria to exploit additional niches and new hosts," explains Sperandio. "Our results suggest that the interplay between ancient and recent evolutionary acquisitions shaped the EHEC we're dealing with today," Gruber adds.
Source: American Society for Microbiology
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.