Researchers at Stanley Manne Children's Research Institute at Ann & Robert H. Lurie Children's Hospital of Chicago, and colleagues, discovered a promising direction toward understanding the development of necrotizing enterocolitis (NEC), a devastating intestinal disease commonly affecting premature infants, in order to treat it. Studying the early cellular events leading to NEC in a mouse model, they found that activation of a key protein (transcription factor NF-κB), which responds to stimuli like bacterial products, triggers inflammation in the intestine prior to the presence of intestinal injury. Blocking NF-κB activity prevented recruitment of bone marrow-derived monocytes (a type of white blood cells) into the intestine and their subsequent differentiation into macrophages (immune cells involved in the inflammatory response but also tissue damage when unregulated). This process decreased the development of NEC. Their findings were published in the American Journal of Pathology.
"Our study points to a new potential strategy for preventing NEC during the first few weeks of life in premature babies who are at high risk for the disease," says senior author Isabelle G. De Plaen, MD, neonatologist and researcher at Manne Research Institute at Lurie Children's, who also is an Associate Professor of Pediatrics at Northwestern University Feinberg School of Medicine. "If we could intervene early to prevent excessive inflammation caused by monocyte recruitment before signs of NEC are found, we could substantially improve outcomes for these babies."
Inflammation is involved in NEC and the damaged intestinal tissues often need to be surgically removed. The resulting short gut is not always sufficient to sustain survival. Damaged intestinal tissue also allows bacteria normally confined inside the intestinal cavity to leak into the abdomen and cause infection. This process can be overwhelming to a baby and possibly fatal. Because the exact causes of NEC are unclear, no specific treatment is currently available and prevention remains a challenge.
"By investigating the earliest inflammatory events in NEC, we come much closer to developing the means to interrupt mechanisms that contribute to this disease," says De Plaen.
This study was supported in part by grants from the National Institutes of Health and funding from the Stanley Manne Children's Research Institute.
Source: Ann & Robert H. Lurie Children's Hospital of Chicago
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.