Scientists have shed new light on the way superbugs such as MRSA are able to become resistant to treatment with antibiotics. Researchers have mapped the complex molecular structure of an enzyme found in many bacteria. These molecules known as restriction enzymes control the speed at which bacteria can acquire resistance to drugs and eventually become superbugs.
The study, carried out by an international team including scientists from the University of Edinburgh, focused on E. coli, but the results would apply to many other infectious bacteria.
After prolonged treatment with antibiotics, bacteria may evolve to become resistant to many drugs, as is the case with superbugs such as MRSA.
Bacteria become resistant by absorbing DNA usually from other bugs or viruses which contains genetic information enabling the bacteria to block the action of drugs. Restriction enzymes can slow or halt this absorption process. Enzymes that work in this way are believed to have evolved as a defence mechanism for bacteria.
The researchers also studied the enzyme in action by reacting it with DNA from another organism. They were able to model the mechanism by which the enzyme disables the foreign DNA, while safeguarding the bacteria's own genetic material. Restriction enzymes' ability to sever genetic material is widely applied by scientists to cut and paste strands of DNA in genetic engineering.
The study was carried out in collaboration with the Universities of Leeds and Portsmouth with partners in Poland and France. It was supported by the Biotechnology and Biological Sciences Research Council and the Wellcome Trust and published in Genes and Development journal.
Dr. David Dryden, of the University of Edinburgh's School of Chemistry, who led the study, says, "We have known for some time that these enzymes are very effective in protecting bacteria from attack by other species. Now we have painted a picture of how this occurs, which should prove to be a valuable insight in tackling the spread of antibiotic-resistant superbugs."
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.