With the discovery of antibiotics, medicine acquired power on a scale never before possible to protect health, save lives, and reduce suffering caused by certain bacteria. But the power of antibiotics is now under siege because some virulent infections no longer respond to antibiotic drugs.
This antibiotic resistance is an urgent public health threat that a team of researchers from Sabanci University in Istanbul, Turkey, and Harvard Medical School and Harvard University in Cambridge, Mass., aim to stop. Their approach is based on an automated device they created that yields a new understanding of how antibiotic resistance evolves at the genetic level. The team will present its work at the 57th annual meeting of the Biophysical Society (BPS), held Feb. 2-6, 2013, in Philadelphia.
Called the "morbidostat," the device grows bacteria in various concentrations of antibiotic. This enabled researchers to identify the concentrations at which the antibiotics stopped working and the bacteria became resistant to therapy. Next, they targeted key genes involved in creating the drug-resistant states. Their approach documented real-time changes in genes that gave bacteria an advantage in evolving to "outwit" antibiotics.
Knowledge at the gene level can be applied to the molecular design of the next generation of bacteria-killing antibiotics.
"Morbidostat is designed to evolve bacteria in conditions comparable with clinical settings, explains Erdal Toprak of Sabanci University. Combined with next generation genome sequencing technologies, it is possible to follow the evolution of resistance in real time and identify resistance-conferring genetic changes that accumulate in the bacterial genome."
Data show an unusual survival profile of the common bacteria they used, Escherichia coli. "We identified striking features in the evolution of resistance to the antibiotic trimethoprim, Toprak says. It was these unusual features that helped them isolate the gene involved in conferring antibiotic resistance through multiple mutations.
The team's next steps will involve determining how this genetic information might one day be applied to drug design to develop new antibiotic therapies.
Presentation #3390-Pos, Evolution of antibiotic resistance through a multi-peaked adaptive landscape, will take place at 10:30 a.m. on Wednesday, Feb. 6, 2013, in the Pennsylvania Convention Center, Hall C.
Source: Biophysical Society
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.