UCI, Northwestern Researchers Create Compounds That Boost Antibiotics' Effectiveness

Article

Inhibitor compounds developed by UC Irvine structural biologists and Northwestern University chemists have been shown to bolster the ability of antibiotics to treat deadly bacterial diseases such as MRSA and anthrax.

The discovery by UC Irvines Thomas Poulos and Northwesterns Richard Silverman builds on previous work in which they created compounds that inhibit an enzyme called neuronal nitric oxide synthase. These have demonstrated the potential to treat neurodegenerative diseases by blocking overproduction of cell-killing nitric oxide within neurons.

Now the researchers are learning that the compounds may have another important function. After Poulos and Silverman read a study suggesting that nitric oxide synthase helped pathogenic bacteria resist antibiotics, their laboratory teams paired the inhibitor compounds with currently used antibiotics to see if they could suppress NOS and increase the antibiotics effectiveness.

We found that NOS inhibitors were extremely successful at inhibiting neurodegeneration in an animal model, and if they could be successful combating other diseases, we wanted to identify that as quickly as possible to help other people, says Poulos, the Chancellors Professor of biochemistry, chemistry and pharmaceutical sciences at UC Irvine.

The researchers tested their compounds on Bacillus subtilis, nonpathogenic bacteria very similar to Staphylococcus aureus (known as MRSA), and Bacillus anthracis, which causes anthrax. Bacteria treated with the NOS inhibitors and an antibiotic were killed off more efficiently and completely than bacteria treated with only an antibiotic. The scientists then compared the three-dimensional structure of the inhibitors bound to the bacterial NOS with those bound to the neuronal NOS and determined that they bonded quite differently.

Now that we know which region of the NOS to target, we should to be able to develop compounds that selectively bind to bacterial NOS, Poulos says, adding that his team will also need to try out those compounds in animal models.

The study, published in the Oct. 31 issue of Proceedings of the National Academy of Sciences, was supported by National Institutes of Health grants GM57353 (to Poulos) and GM49725 (to Silverman).

Source: University of California, Irvine

Related Videos
NFID Medical Director, Robert H. Hopkins, Jr., MD  (Photo courtesy by Evoke Kyne)
Shelley Summerlin-Long, MPH, MSW, BSN, RN, senior quality improvement leader, infection prevention, UNC Medical Center, Chapel Hill, North Carolina
Infection Control Today Infection Intel: Staying Ahead with Company updates and product Innovations.
An eye instrument holding an intraocular lens for cataract surgery. How to clean and sterilize it appropriately?   (Adobe Stock 417326809By Mohammed)
Christopher Reid, PhD  (Photo courtesy of Christopher Reid, PhD)
Paper with words antimicrobial resistance (AMR) and glasses.   (Adobe Stock 126570978 by Vitalii Vodolazskyi)
3D illustration: Candida auris   (Adobe Stock 635576411 By Niamh )
 MIS-C (Adobe Stock 350657530 by Bernard Chantal)
Set of white bottles with cleaning liquids on the white background. (Adobe Stock 6338071172112 by zolnierek)
Related Content