A groundbreaking technique developed at The University of Manchester, which uses crystals to map 'invisible' parts of molecules, is set to revolutionize drug discovery.
The technique, which involves sending beams of neutrons through crystals at freezing temperatures, just a few degrees above 'absolute zero,' will for the first time allow scientists to see complete structures of protein molecules, right down to the last atom.
The problem faced by scientists using current methods is the fact that it is not possible to detect every atom in a protein's molecular structure, and the structures therefore are incomplete making drug design more difficult.
Professor John R. Helliwell, professor of structural chemistry, who led the research, said, "This has raised the stakes in the world of drug discovery. This methodology will make research in the field more powerful, more effective and more efficient."
The breakthrough allows the molecular structures of proteins, the chemical catalysts in the body, to be studied in complete detail. In fact, experiments at the university have shown that the number of visible atoms in a molecule doubled when using the technique, compared to techniques used today.
Protein crystallography is an important tool used to determine the three-dimensional structures of proteins. Once a pharmaceutical company has this information, it is able to tailor drugs to target specific proteins, eg interfering with the function of such proteins in infectious agents like tuberculosis -- enabling the production of more effective medicines.
'Ultra-Cold Neutron Protein Crystallography' improves on current methods by probing protein structures with neutrons at temperatures of 15K (-258 degrees C), dramatically increasing the number of visible atoms. The process especially reveals the hydrogen atoms, which hold the key to many chemical reactions, and because of their low mass, are rarely revealed by current methods like X-Ray Crystallography even if carried out at freezing temperatures.
Helliwell added, "As well as the above advantages, this makes other classes of experiments on proteins feasible. In particular, the comparison of protein structures at ultra-cold versus room temperature allows the details of atomic vibrations to be separated from structural disorders."
"Another benefit to research that now becomes possible is that chemical reactions can be set running directly in the crystal and then freeze-trapped so as to probe the proteins in time with the neutron beam whilst the protein is actually in its functional state."
Source: University of Manchester
A Helping Hand: Innovative Approaches to Expanding Hand Hygiene Programs in Acute Care Settings
July 9th 2025Who knew candy, UV lights, and a college kid in scrubs could double hand hygiene adherence? A Pennsylvania hospital’s creative shake-up of its infection prevention program shows that sometimes it takes more than soap to get hands clean—and keep them that way.
Broadening the Path: Diverse Educational Routes Into Infection Prevention Careers
July 4th 2025Once dominated by nurses, infection prevention now welcomes professionals from public health, lab science, and respiratory therapy—each bringing unique expertise that strengthens patient safety and IPC programs.
How Contaminated Is Your Stretcher? The Hidden Risks on Hospital Wheels
July 3rd 2025Despite routine disinfection, hospital surfaces, such as stretchers, remain reservoirs for harmful microbes, according to several recent studies. From high-touch areas to damaged mattresses and the effectiveness of antimicrobial coatings, researchers continue to uncover persistent risks in environmental hygiene, highlighting the critical need for innovative, continuous disinfection strategies in health care settings.