Valuation of the economic cost of antimicrobial resistance (AMR) is important for decision making and should be estimated accurately. Highly variable or erroneous estimates may alarm policy makers and hospital administrators to act, but they also create confusion as to what the most reliable estimates are and how these should be assessed. This study by Wozniak, et al. (2019) aimed to assess the quality of methods used in studies that quantify the costs of AMR and to determine the best available evidence of the incremental cost of these infections.
In this systematic review, the researchers searched PubMed, Embase, Cinahl, Cochrane databases and grey literature sources published between January 2012 and October 2016. Articles reporting the additional burden of Enterococcus spp., Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), Pseudomonas aeruginosa (P. aeruginosa) and Staphylococcus aureus (S. aureus) resistant versus susceptible infections were sourced. The included studies were broadly classified as reporting oncosts from the healthcare/hospital/hospital charges perspective or societal perspective. Risk of bias was assessed based on three methodological components: (1) adjustment for length of stay prior to infection onset and consideration of time-dependent bias, (2) adjustment for comorbidities or severity of disease, and (3) adjustment for inappropriate antibiotic therapy.
Of 1094 identified studies, the researchers identified 12 peer-reviewed articles and two reports that quantified the economic burden of clinically important resistant infections. Two studies used multi-state modelling to account for the timing of infection minimising the risk of time dependent bias and these were considered to generate the best available cost estimates. Studies report an additional CHF 9473 per extended-spectrum beta-lactamases -resistant Enterobacteriaceae bloodstream infections (BSI); additional â¬3200 per third-generation cephalosporin resistant Enterobacteriaceae BSI; and additional â¬1600 per methicillin-resistant S. aureus (MRSA) BSI. The remaining studies either partially adjusted or did not consider the timing of infection in their analysis.
Implementation of AMR policy and decision-making should be guided only by reliable, unbiased estimates of effect size. Generating these estimates requires a thorough understanding of important biases and their impact on measured outcomes. This will ensure that researchers, clinicians, and other key decision makers concerned with increasing public health threat of AMR are accurately guided by the best available evidence.
Reference: Wozniak TM, et al. Using the best available data to estimate the cost of antimicrobial resistance: a systematic review. Antimicrobial Resistance & Infection Control. 2019;8:26
I Was There: An Infection Preventionist on the COVID-19 Pandemic
April 30th 2025Deep feelings run strong about the COVID-19 pandemic, and some beautiful art has come out of those emotions. Infection Control Today is proud to share this poem by Carmen Duke, MPH, CIC, in response to a recent article by Heather Stoltzfus, MPH, RN, CIC.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.