In a world of increasing global connections, predicting the spread of infectious diseases is more complicated than ever. Pandemics no longer follow the patterns they did centuries ago, when diseases swept through populations town by town; instead, they spread quickly and seemingly at random, spurred by the interactions of 3 billion air travelers per year.
A computational model developed by Northwestern University's Dirk Brockmann could provide better insight into how today's diseases might strike. Brockmann, an associate professor of engineering sciences and applied mathematics at the McCormick School of Engineering and Applied Science, uses transportation data to develop models that better pinpoint the source of an outbreak and help determine how a disease could spread.
Brockmann discussed his research in a presentation titled "Are Pandemics Predictable?" at the American Association for the Advancement of Science (AAAS) annual meeting in Boston. His presentation is part of the symposium "Predictability: From Physical to Data Sciences" held on Feb. 16.
The ability to pinpoint with certainty the location of a pandemic outbreak and to predict where and how quickly it will spread would give governments and clinicians an important -- and potentially lifesaving -- advantage in responding to the disease, but current prediction models are limited.
Previous pandemic models have been based on geographical distance, but geography provides an incomplete picture of a pandemic. For instance, New York City and London are geographically very far apart, but with approximately 10,000 people traveling between the cities each day, the cities are far more connected than, for instance, New York City and Milwaukee, which are geographically closer.
"Furthermore, cities with a very high level of connectedness, such as London, are important epicenters for tracking the spread of diseases," Brockmann says. "When a disease reaches these cities, it is likely to spread far and quickly."
Using network theory and official transportation data, Brockmann developed a model that can generate with high accuracy the origin of an outbreak and the predicted arrival times of a pandemic in specific locations. The model can generate these findings using only data about the geographical location and number of occurrences of the disease.
"Spatial disease dynamics become far more straightforward when viewed from the right perspective using our technique," Brockmann says.
Beyond the Surface: Rethinking Environmental Hygiene Validation at Exchange25
June 30th 2025Environmental hygiene is about more than just shiny surfaces. At Exchange25, infection prevention experts urged the field to look deeper, rethink blame, and validate cleaning efforts across the entire care environment, not just EVS tasks.
A Controversial Reboot: New Vaccine Panel Faces Scrutiny, Support, and Sharp Divides
June 26th 2025As the newly appointed Advisory Committee on Immunization Practices (ACIP) met for the first time under sweeping changes by HHS Secretary Robert F. Kennedy Jr, the national spotlight turned to the panel’s legitimacy, vaccine guidance, and whether science or ideology would steer public health policy in a polarized era.
Getting Down and Dirty With PPE: Presentations at HSPA by Jill Holdsworth and Katie Belski
June 26th 2025In the heart of the hospital, decontamination technicians tackle one of health care’s dirtiest—and most vital—jobs. At HSPA 2025, 6 packed workshops led by experts Jill Holdsworth and Katie Belski spotlighted the crucial, often-overlooked art of PPE removal. The message was clear: proper doffing saves lives, starting with your own.