Researchers at the University of Texas Medical Branch at Galveston have developed less expensive way to produce vaccines that cuts the costs of vaccine production and storage by up to 80 percent without decreasing safety or effectiveness. The findings are currently available in EBioMedicine.
Vaccines are the most effective way to prevent and eradicate infectious diseases. Currently, many vaccines have to be manufactured in cell culture or eggs, which is expensive and carries the risk of contaminations. In addition, most vaccines must be kept refrigerated during the transportation from manufacturers to healthcare clinics. In tropical and subtropical regions, such cold storage requirements could contribute to more than 80 percent of the vaccine cost.
"The ability to eliminate cell culture or eggs and cold storage will change the process of vaccine development," said UTMB's Pei-Yong Shi, professor in the department of biochemistry and molecular biology. "Importantly, this vaccine technology could potentially serve as a universal platform for development of live-attenuated vaccines for many viral pathogens."
To achieve these goals, the UTMB team engineered a live-attenuated Zika vaccine in the DNA form. Once the DNA is delivered into our body, it launches the vaccine in our cells, leading to antibody production and other protective immunity. With this production method, there is no need to manufacture the vaccine in cell culture or eggs at factories. Because DNA molecules are shelf stable, the vaccine will not expire at warm temperatures and could be stockpiled at room temperature for years.
Using UTMB's Zika vaccine as a model, the research group showed that the DNA platform worked very efficiently in mice. After a single low dose, the DNA vaccine protected mice from Zika virus infection, mother-to-fetus transmission during pregnancy and male reproductive tract infection and damage.
"This is the first study to demonstrate that, after a single low dose, a DNA vaccine could induce saturated protective immunity," Shi said. "We will continue testing this promising Zika vaccine platform and then apply the platform to other viruses."
Other authors include UTMB's Jing Zou, Xuping Xie, Huanle Luo, Chao Shan, Antonio Muruato, Scott Weaver and Tian Wang.
Source: niversity of Texas Medical Branch at Galveston
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.