Dr. Julian Hiscox and Dr. John Barr of the University's Faculty of Biological Sciences are working with the Health Protection Agency Porton (HPA) to build a bank of molecular signatures that will help identify the severity of virus infection from characteristic changes seen in cells. Currently the team is barcoding different strains of influenza virus and human respiratory syncytial virus (HRSV) -- a virus associated with the onset of asthma in young children.
"Diseases such as flu infect and hijack our cells, turning them into virus producing factories," says Hiscox. "The infection causes the balance of proteins in a cell to change - some proteins are overproduced and others suppressed. Which proteins are affected and by how much varies depending on the type of virus, allowing us to identify a unique barcode of disease for each."
The research, published today (May 14) in Proteomics, investigates changes in lung cells infected with swine flu from the 2009 outbreak compared with seasonal flu. The team used a labeling technique called SILAC to measure and compare thousands of different proteins in a sample.
This technique was used alongside mass spectrometry to identify the proteins most affected by viral infection and used these as molecular signatures to provide the 'barcode' of disease. The paper reports how several processes in the cell were affected by the virus, with most changes seen in proteins involved in cell replication.
"Swine flu affects the lungs in a similar way to seasonal flu and this was reflected in the barcodes we found for each," explains Barr. "Using this test might have been a way to identify how lethal the 2009 swine flu pandemic was going to be, lessening worldwide panic. Our next step is to test more lethal strains of flu, such as bird flu, to see how the barcodes differ. Flu virus frequently mutates, resulting in new strains which may be life-threatening and become pandemic. If we can test new strains using our method, we can determine their potential impact on health by comparing their barcode of disease to those of viruses already studied."
The group from Leeds has already barcoded two types of HRSV which can cause severe respiratory disease in young children. Co-author professor Miles Carroll of HPA Porton says, "We have focused our work on common respiratory viruses, such as flu and HRSV, but this method could be applied to a wide variety of viruses, including tropical diseases that are prone to sudden outbreaks and can be lethal."
The research was funded by the National Institute for Health Research (NIHR), the Biotechnology and Biological Sciences Research Council (BBSRC) and the Medical Research Council (MRC).
Advancing Infection Prevention With Diagnostic Innovation: Insights From Alesia McKeown, PhD
September 17th 2024Alesia McKeown, PhD, discusses the pivotal role of cutting-edge diagnostic technologies in enhancing infection prevention, especially in high-risk health care environments, during an interview with Infection Control Today.
The Role of Accurate Testing in Preventing Respiratory Illnesses: Insights from Dr. Aparna Ahuja
September 17th 2024On Get Ready for Flu Day, Dr. Aparna Ahuja discusses the importance of accurate respiratory illness testing, the risks of self-diagnosis, and the role of infection prevention personnel in public health education.
How Cleaning Medical Equipment Directly Affects Patient Safety and Equipment Longevity
September 16th 2024Hospital-associated infections affect over 1 million US patients annually. Proper medical equipment cleaning and sterilization significantly reduce infection risks, improving patient outcomes and safety.
Top 3 Secrets to Effective Infection Prevention and Control Through Strategic MDRO Surveillance
September 13th 2024Sean Brown’s 2024 Disease Prevention Summit presentation emphasized leveraging technology, prioritizing high-risk patients, and environmental surveillance to enhance infection prevention and control strategies.