Antibiotic-Resistant Bacteria Proliferate in Agricultural Soils

Article

Infectious diseases kill roughly 13 million people worldwide, annually, a toll that continues to rise, aided and abetted by resistance genes. Now a study, published in the March 2012 issue of Antimicrobial Agents and Chemotherapy finds reservoirs of resistance in agricultural soils. These contained more diverse populations of drug-resistant bacteria, with greater levels of resistance, than composted and forest soils. Vegetable garden soil alone harbored multidrug-resistant bacteria, and also had the highest level of resistance to three major antibiotic classes.

"The observations of this study point to the widespread presence of high level antibiotic-resistant bacteria in agricultural soils," says first author Magdalena Popowska, of the University of Warsaw, Poland.

Antibiotics, and resistance genes thereto, occur naturally in soil due to the arms race between microbial species competing for territory. "Almost 50 percent of Actinomycetes isolated from soil are capable of synthesizing antibiotics, which provide a natural antibiotic residue in soils," says Popowska. But the use of antibiotics to promote livestock growth boosts the resistance to a whole new level, as demonstrated by the differences in resistance level in agricultural and forested soils, she says. Manure from antibiotic-fed animals exacerbates the resistance spread, as demonstrated by the high levels in the manure-amended vegetable garden soils.

The spread of resistance and multi-resistant strains of pathogens and opportunistic bacteria that can infect humans and animals is aided and abetted by the fact that they are frequently carried on mobile genetic elements, notably plasmids and transposons, that can be transferred not only among bacteria of the same species, but among different species, says Popowska.

The results of this study "should assist in the development of regulations regarding the use of antibiotics in the broader environment e.g. in plant protection products fish farming, and industry," says Popowska. "We think they will also help optimize methods allowing the combating of emerging bacterial infections, as well as in the development and application of new chemotherapeutic agents."

The use of antibiotics "should be restricted to dangerous bacterial infections, and to strict medical supervision," says Popowska. "This cannot be emphasized strongly enough."

Reference: Popowska M, et al. Influence of soil use on prevalence of tetracycline, streptomycin, and erythromycin resistance and associated resistance genes. Antimicrobial Agents and Chemotherapy 56:1434-1443. 2012.

Recent Videos
The CDC’s updated hospital respiratory reporting requirement has added new layers of responsibility for infection preventionists. Karen Jones, MPH, RN, CIC, FAPIC, clinical program manager at Wolters Kluwer, breaks down what it means and how IPs can adapt.
Studying for the CIC using a digital tablet and computer (Adobe Stock 335828989 by NIKCOA)
Infection Control Today's Conversations with the HSPA President, Arlene Bush, CRCST, CER, CIS, SME, DSMD, CRMST
Infection Control Today's Conversations with the HSPA President, Arlene Bush, CRCST, CER, CIS, SME, DSMD, CRMST
Cheron Rojo, BS, FCS, CHL,  CER, CFER, CRCST
Matthias Tschoerner, Dr Sc
Standardizing Cleaning and Disinfection
Concept images of Far-UVC  (Adobe Stock 316993517 by hopenv)
Physicians Sound Alarm: Vaccine Misinformation and Policy Failures Threaten US Public Health
Anna Castillo-Gutierrez, CRCST, CSPDT, CHL, CIS, CFER,  and Maya Luera, CRCST, CIS, CER, CHL
Related Content