How Q Fever Invades and Replicates Inside Killer Immune Cells

Article

As part of its life cycle Coxiella burnetii, the bacterial pathogen responsible for Q fever, replicates inside a membrane-bound compartment or "parasitophorous vacuole" (PV) within immune cells. The organism manipulates macrophages to create the PV as well as optimal conditions for growth.

Circumstantial evidence has suggested that C. burnetii is able to exert this control using proteins that are delivered via a mechanism called a Dot/Icm type IVB secretion system (T4BSS) which is critical for successful parasitism of macrophages by the organism.

Using new genetic tools, researchers from the National Institute of Allergy and Infectious Diseases and the University of Arkansas for Medical Science have finally verified that Dot/Icm function is in fact essential for productive infection of human macrophages by C. burnetii.

The research was published in mBio, an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible.

Recent Videos
The CDC’s updated hospital respiratory reporting requirement has added new layers of responsibility for infection preventionists. Karen Jones, MPH, RN, CIC, FAPIC, clinical program manager at Wolters Kluwer, breaks down what it means and how IPs can adapt.
Studying for the CIC using a digital tablet and computer (Adobe Stock 335828989 by NIKCOA)
Infection Control Today's Conversations with the HSPA President, Arlene Bush, CRCST, CER, CIS, SME, DSMD, CRMST
Infection Control Today's Conversations with the HSPA President, Arlene Bush, CRCST, CER, CIS, SME, DSMD, CRMST
Cheron Rojo, BS, FCS, CHL,  CER, CFER, CRCST
Matthias Tschoerner, Dr Sc
Standardizing Cleaning and Disinfection
Concept images of Far-UVC  (Adobe Stock 316993517 by hopenv)
Physicians Sound Alarm: Vaccine Misinformation and Policy Failures Threaten US Public Health
Anna Castillo-Gutierrez, CRCST, CSPDT, CHL, CIS, CFER,  and Maya Luera, CRCST, CIS, CER, CHL
Related Content