For years, researchers have known that the bacteria Staphylococcus aureus (S. aureus) can trigger severe, sometimes deadly secondary bacterial pneumonia, in some people who are subsequently infected with influenza A virus, but scientists have not known exactly how this happens. Now, scientists have developed a new model for studying this phenomenon, which could lead to new treatments designed to prevent secondary bacterial infections. The findings were published this week in mBio, an online open-access journal of the American Society for Microbiology.
"This study has established a physiologically relevant model, so we can now more carefully evaluate the actual events involved after colonization with S. aureus and identify the primary factors that can lead to secondary bacterial pneumonia," said principal study investigator Anthony Campagnari, PhD, professor of microbiology/immunology and medicine at the University at Buffalo, State University of New York.
S. aureus is one of the most common causes of secondary bacterial pneumonia in cases of seasonal influenza. Scientists have been studying this phenomenon by introducing S. aureus directly into the lungs of mice. However, this does not mimic the natural pathogenesis of infection. In the new model, Ryan Reddinger, a senior doctoral student in the Campagnari Laboratory, developed a technique where S. aureus stably colonizes the nares of mice and these animals are subsequently infected with influenza A virus to see what would happen.
"Ryan's work demonstrated that influenza A virus infection leads to the dissemination of S. aureus from the nasal cavity into the lungs, resulting in the development of secondary bacterial pneumonia in these mice," said Campagnari. "The model is very relevant to the current physiologic state in humans where individuals are colonized by S. aureus in the nares and subsequently acquire a viral infection. The fascinating thing about this model is when we colonize mice with S. aureus it remains in the nares for up to seven days, without obvious signs of disease and does not appear to move to the lungs on its own. The bacteria only disseminates to the lungs in response to the subsequent viral infection."
It has been well known that when a person gets a viral infection, there are certain physiologic changes that occur in the nasopharynx that are related to damage of host cells and host responses, including increased body temperature and release of ATP, glucose, and norepinephrine. With their model, the researchers discovered that a combination of these factors, in the absence of influenza A virus, will cause S. aureus to leave the nasopharynx and travel to the lungs.
"We don't know why the viral infection induces the bacteria to disseminate to the lung, but now we can evaluate potential mechanisms more closely because of this model," said Campagnari. "In addition this model could be adapted to study other virus-bacterial interactions."
Source: American Society for Microbiology
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.