The practice of sterilizing medical tools and devices helped revolutionize healthcare in the 19th century because it dramatically reduced infections associated with surgery. Through the years, numerous ways of sterilization techniques have been developed, but the old mainstay remains a 130-year-old device called an autoclave, which is something like a pressure steamer. The advantage of the autoclave is that the unsterile tools can be packed into sealed containers and then processed, staying sealed and sterile after they are removed.
Norbert Koster and his colleagues at TNO Science and Industry, an independent research organization in the Netherlands, are developing a new way to sterilize medical devices by sealing them inside plastic bags and then using electromagnetic fields to create plasmas -- partially ionized gasses that contain free electrons and reactive ions. Scientists have known for a long time that plasmas have the ability to kill bacteria and sterilize objects, but the major problem has always been that plasma-sterilized objects still had to be packed into a sealed container afterwards. There was no way to sterilize them inside sealed containers.
Now, Koster and his colleagues have developed a way to do just that, to be presented on Nov. 13 at a meeting of AVS in San Jose, Calif. They found a way to sterilize medical instruments by sealing them inside vacuum bags and then placing them in chambers that are at even lower pressure. This causes the vacuum pack around the tools to puff out. Then they use an electromagnetic field to remotely ignite a plasma inside the bag, killing the bacteria and viruses therein. When the process is finished and the bag is removed from the chamber, the outside pressure causes it to shrink down again to closely wrap the now sterilized objects, keeping them sealed.
At the moment, Koster and his colleagues are investigating how long the discharge needs to be to destroy all the bacteria and viruses. This technique is not likely to replace the traditional autoclave any time soon, but it opens up the possibility of sterilizing new types of instruments, including devices like detectors and other fancy electronics that would otherwise be damaged by traditional steam-and-heat methods.
Unmasking Vaccine Myths: Dr Marschall Runge on Measles, Misinformation, and Public Health Solutions
May 29th 2025As measles cases climb across the US, discredited myths continue to undercut public trust in vaccines. In an exclusive interview with Infection Control Today, Michigan Medicine’s Marschall Runge, PhD, confronts misinformation head-on and explores how clinicians can counter it with science, empathy, and community engagement.
Silent Saboteurs: Managing Endotoxins for Sepsis-Free Sterilization
Invisible yet deadly, endotoxins evade traditional sterilization methods, posing significant risks during routine surgeries. Understanding and addressing their threat is critical for patient safety.
Endoscopes and Lumened Instruments: New Studies Highlight Persistent Contamination Risks
May 7th 2025Two new studies reveal troubling contamination in both new endoscopes and cleaned lumened surgical instruments, challenging the reliability of current reprocessing practices and manufacturer guidelines.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.