A new 3-D view of the bodys response to infection and the ability to identify proteins involved in the response could point to novel biomarkers and therapeutic agents for infectious diseases.
The team using MRIand imaging mass spectrometry to visualize the inflammatory response includes (bottom row, from left) Lisa Manier, Erin Seeley, PhD, Eric Skaar, PhD, and Richard Caprioli, PhD, (top row, from left) Kristie Rose, Neal Hammer, Josh Nicklay, Kevin Wilson, MESc, and Daniel Colvin, PhD. Photo by Joe Howell.
By Leigh MacMillan
A new 3-D view of the bodys response to infection and the ability to identify proteins involved in the response could point to novel biomarkers and therapeutic agents for infectious diseases.
Â
Vanderbilt University scientists in multiple disciplines combined magnetic resonance imaging (MRI) and imaging mass spectrometry to visualize the inflammatory response to a bacterial infection in mice. The techniques, described in Cell Host & Microbe and featured on the journal cover, offer opportunities for discovering proteins not previously implicated in the inflammatory response.
Â
Access to unique resources at Vanderbilt made the unprecedented 3-D infection imaging possible, says Eric Skaar, PhD, the Ernest Goodpasture Chair in Pathology and one of the senior co-authors of the paper. The studies in this paper couldnt have happened at any other university, because the resources simply dont exist at most schools, Skaar says.
Â
The team using MRIand imaging mass spectrometry to visualize the inflammatory response includes (bottom row, from left) Lisa Manier, Erin Seeley, Ph.D., Eric Skaar, Ph.D., and Richard Caprioli, Ph.D., (top row, from left) Kristie Rose, Neal Hammer, Josh Nicklay, Kevin Wilson, MESc, and Daniel Colvin, Ph.D. (photo by Joe Howell)
Â
The resources include animal imaging technologies available through the Vanderbilt University Institute of Imaging Science (VUIIS), directed by John Gore, PhD, and imaging mass spectrometry technologies available through the Mass Spectrometry Research Center (MSRC), directed by Richard Caprioli, PhD. Gore and Caprioli are also senior co-authors of the paper.
Â
The fact that my research group, which studies infectious diseases, has access to these powerful imaging and mass spectrometry technologies is a real strength at Vanderbilt and has allowed us to develop these new tools that will enable high impact discovery, Skaar says.
Â
Skaar and his team were interested in imaging infection in three dimensions in the whole animal while also being able to identify the proteins that are produced at sites of infection. MRI provides detailed anatomical images of tissue damage.
 Â
Imaging mass spectrometry is a unique technology that directly measures proteins, lipids and other metabolites and maps their distribution in a biopsy or other tissue sample.
Â
Ahmed Attia, PhD, a former member of Skaars group now on the faculty at Cairo University, Egypt, infected mice with Staphylococcus aureus, a major cause of human disease.
Â
He then delivered the infected animals to Daniel Colvin, PhD, in the VUIIS, who imaged them with MRI. Kaitlin Schroeder and Erin Seeley, PhD, in the MSRC then conducted imaging mass spectrometry studies.
Â
Putting together the two technologies and multiple data sets accurately required the expertise of Kevin Wilson, MESc, in the VUIIS, who developed algorithms to show consolidated 3-D views of the inflammatory response.
Â
This is another example of the multi-modality approach we have been pursuing in general within the Imaging Institute, Gore says.
Â
The technologies allow the investigators to see a single image of an infected animal, look at how proteins of the immune system are responding, and identify where the infected tissue is located, Skaar says. Part of the strength of this work is not where the research is now, but where it allows us to go from here.
Â
His team plans to identify proteins that are important at the interface between the host and the pathogen the battleground between the immune system and the bacteria, Skaar says.
Â
The researchers will study the proteins they identify to discover new biomarkers for infection, which could improve diagnostic tools, or new targets for therapeutic intervention.
Â
The technologies available through the MSRC and the VUIIS will be useful for any investigator interested in imaging the inflammatory response, which has roles in infectious diseases, cancer and autoimmune diseases, Skaar said.
Â
And although the technology is not non-invasive (imaging mass spectrometry requires tissue sections), it could be applied to tissues removed from patients, such as tumors.
Â
Imaging mass spectrometry is extremely valuable for the discovery process because it does not require a target-specific reagent such as an antibody that is, you do not have to know in advance what youre looking for in order to correlate molecular changes with disease outcome, Caprioli says. An area of intense interest is the application of this technology to molecular pathology.
Â
The research was supported by grants from the National Institutes of Health (AI069233, AI091771, AI073843, GM058008), the establishment of an NIH-funded National Resource for Imaging Mass Spectrometry, and a Pfizer 2009 ASPIRE research award.
Â
Skaar is a Burroughs Wellcome Fellow in the Pathogenesis of Infectious Diseases and is associate professor of pathology, microbiology and immunology. Gore is University Professor of Radiology and Radiological Sciences and Hertha Ramsey Cress Chair in Medicine. Caprioli is Stanford Moore Chair in Biochemistry.
Source: Vanderbilt UniversityÂ
Â
Â
Â
APIC Salutes 2025 Trailblazers in Infection Prevention and Control
June 18th 2025From a lifelong mentor to a rising star, the Association for Professionals in Infection Control and Epidemiology (APIC) honored leaders across the career spectrum at its 2025 Annual Conference in Phoenix, recognizing individuals who enhance patient safety through research, leadership, and daily practice.
Building Infection Prevention Capacity in the Middle East: A 7-Year Certification Success Story
June 17th 2025Despite rapid development, the Middle East faces a critical shortage of certified infection preventionists. A 7-year regional initiative has significantly boosted infection control capacity, increasing the number of certified professionals and elevating patient safety standards across health care settings.
Streamlined IFU Access Boosts Infection Control and Staff Efficiency
June 17th 2025A hospital-wide quality improvement project has transformed how staff access critical manufacturer instructions for use (IFUs), improving infection prevention compliance and saving time through a standardized, user-friendly digital system supported by unit-based training and interdepartmental collaboration.
Swift Isolation Protocol Shields Chicago Children’s Hospital During 2024 Measles Surge
June 17th 2025When Chicago logged its first measles cases linked to crowded migrant shelters last spring, one pediatric hospital moved in hours—not days—to prevent the virus from crossing its threshold. Their playbook offers a ready template for the next communicable-disease crisis.
Back to Basics: Hospital Restores Catheter-Associated UTI Rates to Prepandemic Baseline
June 16th 2025A 758-bed quaternary medical center slashed catheter-associated urinary tract infections (CAUTIs) by 45% over 2 years, proving that disciplined adherence to fundamental prevention steps, not expensive add-ons, can reverse the pandemic-era spike in device-related harm.