Researchers from the University of Copenhagen and the Technical University of Denmark along with other collaborators in Denmark and the U.S. found that the bacterium Pseudomonas aeruginosa can 'switch on' production of molecules that kill white blood cells – preventing the bacteria being eliminated by the body's immune system.
P. aeruginosa is responsible for many hospital-acquired infections and also causes chronic infections in those with pre-existing medical conditions such as cystic fibrosis (CF). The bacteria cause persistent lung infections by clumping together to form a biofilm, which spreads over the lungs like a slime. Such biofilms are generally resistant to antibiotics as well as the host immune response.
The study showed that P. aeruginosa uses a well-studied communication system called quorum sensing (QS) to detect approaching white blood cells and warn other bacteria in the biofilm. In response to this signal, the bacteria increase their production of molecules called rhamnolipids. These molecules sit on the biofilm surface to form a shield that destroys any white blood cells that encounter it. Interrupting quorum sensing to halt the "launch a shield" response could be a way of treating these bacteria that can resist antibiotics as well as the host immune system.
Michael Givskov from the University of Copenhagen who led the study believes there are significant clinical benefits to this research. "The ultimate goal [of this research] is to eradicate the present day's antibiotic-resistant bacteria that are involved in the bulk of chronic infections," he says. "Antibiotic resistance is one of the most serious emerging health problems in the world today. More than 70 percent of the disease-causing bacteria are resistant to at least one of the currently available antibiotics. Studying interactions between P. aeruginosa and the innate and adaptive immune response will provide valuable information for the design of novel antimicrobials."
Unmasking Vaccine Myths: Dr Marschall Runge on Measles, Misinformation, and Public Health Solutions
May 29th 2025As measles cases climb across the US, discredited myths continue to undercut public trust in vaccines. In an exclusive interview with Infection Control Today, Michigan Medicine’s Marschall Runge, PhD, confronts misinformation head-on and explores how clinicians can counter it with science, empathy, and community engagement.
Silent Saboteurs: Managing Endotoxins for Sepsis-Free Sterilization
Invisible yet deadly, endotoxins evade traditional sterilization methods, posing significant risks during routine surgeries. Understanding and addressing their threat is critical for patient safety.
Endoscopes and Lumened Instruments: New Studies Highlight Persistent Contamination Risks
May 7th 2025Two new studies reveal troubling contamination in both new endoscopes and cleaned lumened surgical instruments, challenging the reliability of current reprocessing practices and manufacturer guidelines.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.